

Resistance Profile of HIV-1 Maturation Inhibitor GSK3532795

Ira Dicker,¹ Beata Nowicka-Sans,^{1*} Sharon Zhang,¹ Neelanjana Ray,³ Brett Beno,³ Alicia Regueiro-Ren,³ Samit Joshi,² Mark Cockett,¹ Mark Krystal,¹ and Max Lataillade²

ViiV Healthcare, Departments of ¹Discovery and ²Development, Branford, CT 06405, USA, ³Bristol-Myers Squibb, Research and Development, Wallingford, CT 06492 and Princeton, NJ 08540, USA.

*Deceased.

GSK3532795 – Profile of a Secondgeneration Maturation Inhibitor (MI)

- Background GSK3532795 (formerly BMS-955176) is a second-generation human immunodeficiency virus (HIV-1) maturation inhibitor that targets HIV-1 Gag, inhibiting the final protease cleavage between capsid protein p24 and spacer protein-1, producing immature, noninfectious virions
- Despite comparable efficacy results as EFV in Phase 2b (76%, 83%, 82% for GSK3532795 60mg, 120mg and 180mg vs. 77% for EFV), unacceptable rates of gastrointestinal AEs and treatment-emergent resistance led to the discontinuation of GSK3532795 development
- The **objectives** of these studies were to:
 - investigate the *in vitro* resistance profile for GSK3532795 and compare to genotypic profiles seen during the Phase 2a (AI468002) study; relate results to the underlying mechanism for MI resistance in the context of a structural model; review virological profiles of next generation MIs vs GSK3532795
- Methods Selections w/WT or Gag polymorphic backgrounds
 - Passage Method: 1 or 2x EC₅₀, increasing GSK3532795 concentration 2-fold with each passage until viral breakthrough, determine genotypes
 - Breakthrough Method: fixed 30x EC₅₀ GSK3532795, measure days to viral breakthrough, determine genotypes

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

GSK3532795 *In Vitro* Resistance Mutations

GSK3532795 resistance

Resistance Mutations Map to Gag (C-terminus of Capsid and CA/SP1 Domain)

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

GSK3532795 *In Vitro* Resistance Mutations

Binding of MIs rigidify the structure, inhibiting protease access. Effects of resistance mutations are explained by their disruption of the structure of the CA/SP1 6-helix bundle,^{1,2} increasing access and rate of CA/SP1 cleavage²

Capsid C-terminus and SP1 hexamer

1. Schur FK et al. Science 2016; 353:506-8, 4; 2. Lin, Z., et al. PLOS Path, 2016; https://doi.org/10.1371/journal.ppat.1005990 Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

On-treatment Genotypic and Phenotypic Changes in AI468002 (Day 10 Monotherapy, Phase 2a)

Dose (mg)	Baseline Gag polymorphism	Emergent genotypic mutation	CFB (ratio of FC-EC ₅₀ at Day 10/ Day 0)	Max viral load reduction
10	WT	A364A/V	67	-1.76
20	WT	V370I/V	1.1	-1.68
40	\A/T	V362I/V, A364A/V	9.7	-1.09
	VV I	V370M	116	-1.69
80	wт	V362I/V, A364V/A	47	-1.50
		A364V/A	0.99	-1.73
120	286K/R	V362I	>116	-0.83
	286K	V370A/V	4.1	-1.57
10	V370M	V362I/V	0.62	-1.31
20	V370A	V362I/V, A364A/V	>633	-1.23
	V370M	A364A/V	221	-2.12
40	286K, V370M	Q369Q/H	12	-0.93
	286K/R, 370A/V	None (V370A)	7.2	-1.71
80	V370M	None (A366A/V)*	1.1	-1.04
120	286K, V362I/V	None (V362I)	138	-0.83
	V370A/V	None (V370X)	6.3	-2.07

 AI468002 (Phase 2a study) genotypes are similar to those selected *in vitro* (V362I, A364V); decreases in BL FC up to >633 fold

 In the context of primary 362 and 370 changes, baseline R286K acts as a secondary resistance substitution

WT = no changes from canonical subtype B Gag V362,Q369,V370;

Red shows 9/33 (27%) subjects with **both** genotypic *Gag* changes and CFB >3.

Black shows subjects with either genotypic or phenotypic changes only.

Parenthesis indicate conversion from BL mixtures to single genotype on day 10.

*emergence of A366A/V; under study

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

Next Generation MIs – MoA for Improved Coverage

 Next generation MIs show higher maximal activity in vitro, acting as complete (not partial) antagonists^{2,3} with improved activity against all key baseline Gag polymorphisms and subtypes

Black curves: GSK795; green curve: MI A toward V362I/V370A

Gag	Maximal Percent Inhibition (MPI) ^{1,2}			
rorymorph	GSK3532795	MIA		
WT	99	99		
V362I	94	99		
∆V370	92	97		
V362I/V370A	76	96		

Green color: MPI values of > 95% correspond to FC-IC₅₀ values of < 2 fold

2. Lin, Z., et al. PLOS Path, 2016; https://doi.org/10.1371/journal.ppat.1005990

3. Lin, et al. 23rd CROI 2016, abstract 466

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

Next Generation MIs – MoA for Improved Coverage

	% subtype B, LANL DB	GSK3532795		MIA		MIB	
Subtype		ЕС ₅₀ , µМ	FC EC ₅₀	ЕС ₅₀ , µМ	FC EC ₅₀	ΕС ₅₀ , μΜ	FC EC ₅₀
WT	51	0.0020	1.0	0.0016	1.0	0.0024	1.0
V370A	15	0.0027	1.4	0.0019	1.2	0.0036	1.5
ΔV370	2	0.013	6.7	0.0036	2.3	0.0045	1.9
V362I/V370A	2	0.15	76	0.0013	0.8	0.0026	1.1
A326T/V362I/ V370A*	0	1.5	750	0.0035	2.2	0.004	1.7
R361K/V362I/ L363M [†]	0	1.2	601	0.0029	1.8	0.0045	1.9

- Next generation MIs inhibit GSK795/r viruses by binding with higher affinity², compensating for negative effects of destabilizing resistance changes
- Suggestive of >99% clinical coverage of Gag polymorphisms

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

Conclusions

- Emergent substitutions observed *in vitro* and in clinical studies were similar, selecting mainly for changes to A364 and V362
- Certain double Gag polymorphisms in AI468002, e.g. 362 and 370, were associated with reduced *in vitro* susceptibility and sub-optimal clinical responses
- Secondary mutations in Gag (R286K, A326T, T332S, I333V) conferred reduced susceptibility only in the context of primary polymorphisms. Only R286K was observed clinically
- Next generation MIs exhibit complete antagonism resulting in pan-genotypic phenotypes with greatly improved activity against all single, double and triple Gag polymorphisms, including those causing significant reductions to GSK3532795 susceptibility

Acknowledgments

- Bristol-Myers Squibb: Zeyu Lin. ViiV Healthcare: Heather Sevinsky. We would like to thank all of the Al468002 clinical trial participants and their families, and all investigators.
- Editorial assistance was provided by Sharmin Bovill at MediTech Media and funded by ViiV Healthcare.

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

Backup slides

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

On-treatment genotypic and phenotypic changes in AI468002 at Day 10

Dose (mg)	Baseline Gag polymorphism	Emergent genotypic mutation	FC-EC50 at Day 0/ Day10	CFB (ratio of FC- EC50 at Day 0/ Day10)	Day 11 VLR	Max viral load reduction
10	wт	A364A/V	0.63/42.2	67	-1.16	-1.76
20	wт	V370I/V	0.48/0.52	1.1	-1.59	-1.68
40	wt	V362I/V, A364A/V	0.39/3.8	9.7	-0.95	-1.09
		V370M	1.14/132	116	-1.69	-1.69
80	wt	V362I/V, A364V/A	3.1/146	47	-1.31	-1.50
		A364V/A	0.95/0.94	0.99	-1.73	-1.73
120	286K/R	V362I	6.05/>704	>116	-0.83	-0.83
	286K	V370A/V	3.9/15.8	4.1	-1.53	-1.57
10	V370M	V362I/V	2.5/1.6	0.62	-1.02	-1.31
20	V370A	V362I/V, A364A/V	1.7/>666	>633	-0.64	-1.23
	V370M	A364A/V	0.48/106	221	-1.94	-2.12
40	286K, V370M	Q369Q/H	1.6/20	12	-0.93	-0.93
	286K/R, 370A/V	None (V370A)	68.5/496	7.2	-0.64	-1.71
80	V370M	None (A366A/V)*	2.26/2.03	1.1	-0.93	-1.04
120	286K, V362I/V	None (V362I)	2.95/407	138	-0.81	-0.83
	V370A/V	None (V370X)	0.82/5.2	6.3	-1.54	-2.07

- AI468002 (Ph2a study) genotypes are similar to those selected in vitro (V362I, A364V); decreases in BL FC up to >633 fold
- In the context of primary 362 and 370 changes, baseline R286K acts as a secondary resistance substitution

WT = no changes from canonical subtype B Gag V362,Q369,V370;

Red shows 9/33 (27%) subjects with **both** genotypic *Gag* changes and CFB >3. **Black** shows subjects with either genotypic or phenotypic changes only.

Parenthesis indicate conversion from BL mixtures to single genotype on day 10.

*emergence of A366A/V; under study

Dicker et al. HIVDRTS 2017; Johannesburg, South Africa. Abstract #.

Schematic for Inhibition of Infectivity by MIs

